FAA DER APPROVED MODIFICATIONS
[Repairs & Alterations] Workshop

Mar 26th 2014
Dominick DaCosta
FAA DERT / RS-DER /DARF
About your Instructor

Dominick P. DaCosta

- FAA DER-T Engines Chart E, Powerplant Chart B, Systems Chart C1, Structures Chart A ~ PMA ID Findings Authority & Major Repair/Alterations Multiple Use Authority & RS-DER Authority.

- FAA DAR-F ~ Class I, II, and III Parts.

- 30 years Aerospace Manufacturing Engineering

- 20 years Engine/APU Maintenance & Repair Engineering

- ASNT Level III Since 1976~2014

- Licensed FAA A&P Mechanic

- Certified by National Institute for the Certification of Technologist [NICET~NSPE]

- Senior Welding Engineering Technologist ~ 1979 ~ 2014

- Indiana University - BGS

- Ohio State University - Welding Engineering Certification Program

- Massachusetts Institute of Technology - Micro Mechanics Program

- Kings Aeronautical Institute of Technology – Powerplant Technology
Presenters Disclaimer

• The Federal Aviation Administration is not in any way responsible for the data, or the opinions presented herein.
• The opinions and data presented herein are those of the presenter.
• The audience is responsible to confirm that all data, relative to FAA regulatory information presented are current.
• FAA data may be obtained on WWW.FAA.GOV
What is a DER?

- A DER [Designated Engineering Representative] are individuals who meet the requirements of 14 CFR Part 183, and order 8100.8.
- The DER designation covers discipline specialties as defined in Order’s 8100.8, and 8110.37.
- These delegations are defined by charts

10 Areas

- Chart A, DER Structural
- Chart B, DER Powerplant Installations
- Chart C1, DER Systems and Equipment
- Chart C2, DER Systems and Equipment (Electrical Equipment)
- Chart D, DER Radio
- Chart E, DER Engines
- Chart F, DER Propellers
- Chart G, DER Flight Analyst
- Chart H, DER Flight Test Pilot
- Chart I, DER Acoustical
Delegated Disciplines

(1) Structural engineering,
(2) Powerplant engineering,
(3) Systems and equipment engineering,
(4) Radio engineering,
(5) Engine engineering,
(6) Propeller engineering,
(7) Flight analyst,
(8) Flight test pilot, and
(9) Acoustical engineering.

© DERS GROUP SVC LLC
2-5. DER Designations.

a. Structural DERs may approve, within the limits of their appointment, the following items that comply with pertinent regulation(s):

(1) Engineering reports,
(2) Drawings,
(3) Material and process specifications used in structural applications, and
(4) Other data relating to structural considerations.

Let’s look at the chart A layout
Appendix B. Delegated Functions and Authorized Areas

Figure 1. Chart A, DER Structural

Functions and areas that can be authorized are defined by white squares. Each DER’s authority may be different, and is identified in their letter of appointment.

<table>
<thead>
<tr>
<th>AUTHORIZED AREAS</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>O</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural-General (1)</td>
<td></td>
</tr>
<tr>
<td>Structural-Wing Group</td>
<td></td>
</tr>
<tr>
<td>Structure-Wing Spars Group</td>
<td></td>
</tr>
<tr>
<td>Structure-Landing Gear</td>
<td></td>
</tr>
<tr>
<td>Structure-Landing Gear</td>
<td></td>
</tr>
<tr>
<td>Structure-Elevator Controls</td>
<td></td>
</tr>
<tr>
<td>Structure-Flap Controls</td>
<td></td>
</tr>
<tr>
<td>Leading Edge Components</td>
<td></td>
</tr>
<tr>
<td>Leading Edge Components</td>
<td></td>
</tr>
<tr>
<td>Metallic Materials (2)</td>
<td></td>
</tr>
<tr>
<td>Nonmetallic Materials (3)</td>
<td></td>
</tr>
<tr>
<td>Interior Materials</td>
<td></td>
</tr>
<tr>
<td>Electrical Components</td>
<td></td>
</tr>
<tr>
<td>Fire Protection Systems</td>
<td></td>
</tr>
<tr>
<td>Door Systems</td>
<td></td>
</tr>
<tr>
<td>Specialties</td>
<td></td>
</tr>
</tbody>
</table>

DELEGATED FUNCTIONS
1. STATIC ANALYSIS
2. DYNAMIC ANALYSIS
3. FATIGUE ANALYSIS
4. DESIGN AND CONSTRUCTION
5. FLUTTER/GROUND VIBRATION
6. SAFETY ANALYSIS
7. FLOTATION & DITCHING ANALYSIS
8. STRUCTURAL LOADING LIMITATIONS
9. SERVICE DOCUMENTS
10. MATERIAL & PROCESS SPEC.
11. FLAMMABILITY
12. DAMAGE TOLERANCE EVALUATIONS

Note (1): Includes all airframe components: wing, fuselage, empennage, landing gear, flight controls, engine mounts, and special components. Does not apply to rotors.

Notes (2) and (3): Select Specialty by Note number and sub-letter from lists below. General applies to all processes listed.

1. Metallic Materials/Processes
 A - Materials & Processes - General
 B - Non-Destructive Inspection/Testing
 C - Metallurgy
 D - Metal Joining Processes
 E - Structural Adhesives
 F - Mechanical Fasteners
 G - Surface Treatment/Coatings
 H - Bearings

2. Nonmetallic Materials/Processes
 A - Material & Processes - General
 B - Transparent (Glazed) Material
 C - Polymeric Materials
 D - Structural Adhesives
 E - Mechanical Fasteners
 F - Composites
 G - Non-Destructive Inspection/Testing
 H - Surface Treatment & Coatings
 I - Structural Joining Methods

© DERS GROUP SVC LLC
Figure 2. Chart B, DER Powerplant Installations

Functions and areas that can be authorized are defined by white squares. Each DER’s authority may be different, and is identified in their letter of appointment.

<table>
<thead>
<tr>
<th>DELEGATED FUNCTIONS</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ENGINE INSTALLATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 FUEL & OIL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 INDUCTION/EXHAUST SYSTEMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 THRUST REVERSERS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 FIRE PROTECTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 ICE PROTECTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 COOLING</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 ENGINE PERFORMANCE/OPERATIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 INDICATING SYSTEMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 LIGHTNING/HIFR PROTECTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 SOFTWARE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 CONTROL SYSTEM - ELECTRONIC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 CONTROL SYSTEM - MECHANICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 EMISSIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 VIBRATION - ENGINE, PROPELLER, OR DRIVE SYSTEM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 PROPELLER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 DRIVE SYSTEM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 TRANSMISSIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 SAFETY ANALYSIS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 SERVICE DOCUMENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 3. Chart C1, DER Systems and Equipment (Mechanical Equipment)

Functions and areas that can be authorized are defined by white squares. Each DER’s authority may be different, and is identified in their letter of appointment.
Figure 4. Chart C2, DER Systems and Equipment (Electrical Equipment)

Functions and areas that can be authorized are defined by white squares. Each DER’s authority may be different, and is identified in their letter of appointment.

<table>
<thead>
<tr>
<th>AUTHORIZED AREAS</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical Equip</td>
<td></td>
</tr>
<tr>
<td>Electronic Equip</td>
<td></td>
</tr>
<tr>
<td>Communications</td>
<td></td>
</tr>
<tr>
<td>Flight Controls</td>
<td></td>
</tr>
<tr>
<td>Augmentation</td>
<td></td>
</tr>
<tr>
<td>Electronic Equip</td>
<td></td>
</tr>
<tr>
<td>Air Data/Flight</td>
<td></td>
</tr>
<tr>
<td>Static</td>
<td></td>
</tr>
<tr>
<td>Navigation</td>
<td></td>
</tr>
<tr>
<td>Systems/Antenna</td>
<td></td>
</tr>
<tr>
<td>Warning Systems</td>
<td></td>
</tr>
<tr>
<td>Interior/Exterior</td>
<td></td>
</tr>
<tr>
<td>Lighting</td>
<td></td>
</tr>
<tr>
<td>Flight Data/Video</td>
<td></td>
</tr>
<tr>
<td>Recording</td>
<td></td>
</tr>
<tr>
<td>Passenger Address</td>
<td></td>
</tr>
<tr>
<td>Entertainment</td>
<td></td>
</tr>
<tr>
<td>Special (Specify)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DELEGATED FUNCTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 DETAIL DESIGN AND INSTALLATION</td>
</tr>
<tr>
<td>2 EQUIPMENT QUALIFICATION TESTS</td>
</tr>
<tr>
<td>3 SOFTWARE</td>
</tr>
<tr>
<td>4 SERVICE DOCUMENTS</td>
</tr>
<tr>
<td>5 ELECTRICAL LOAD ANALYSIS</td>
</tr>
<tr>
<td>6 SAFETY ANALYSIS</td>
</tr>
<tr>
<td>7 LIGHTNING/HIRF PROTECTION</td>
</tr>
</tbody>
</table>
SO Chart A Structures and Engine DER’s are the only two DER’s that can be delegated by “Functional Area” to review and approve Materials, and Processes …… The other disciplines must seek their reviews or get the ACO approval for these areas.
Figure 6. Chart E, DER Engines

Functions and areas that can be authorized are defined by white squares. Each DER’s authority may be different, and is identified in their letter of appointment.

<table>
<thead>
<tr>
<th>AUTHORIZED AREAS</th>
<th>Turbine Engines</th>
<th>Piston Engines</th>
<th>Special (Specify)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>DELEGATED FUNCTIONS</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 DETAIL DESIGN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 BLOCK TESTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 PERFORMANCE CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 VIBRATION ANALYSIS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 OPERATION MANUALS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 OVERHAUL MANUALS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 SERVICE DOCUMENTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 EXHAUST EMISSIONS EVALUATION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 SOFTWARE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 SAFETY ANALYSIS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 LIGHTNING/HIRF PROTECTION</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What is a DER? [Cont]

• DER’s can also be granted additional special delegations that are identified in Order 8110.37 [DER Handbook]. These special delegations are not part of the DER basic authority areas. These are:

- Approval of Service Documents
- DER International Operating Procedures
- PMA Identicality Procedures
- Repairs and Alterations
- Repair Specifications (RS)
- Flammability Testing of Interior Materials
Which FAA branch appoints DER’s

- Aircraft Certification Office which is has primary responsibility for engineering and design aspects of any airworthiness data.
- Additional shared responsibilities with Organizational Designees [A/R’s] are shared with FAA MIDO for new ODA-TC/PMA designs. And with FAA FSDO for ODA-M/R.
What types of data can the DER approve

- Repairs, Alterations and other data approved by a Designated Engineering Representative (DER or RS-DER) of the FAA ACO.
- Alternate means of compliance (AMOC) {Ref 14 CFR Part 39}
- Evaluation of repair design data against the same FAA regulations used to issue the aircraft TC (i.e., Part, 23, 25)
- DER issues FAA Form 8110-3 which defines applicability, limitations and ICA for the repair
- Repair is executed to FAA Approved Data [ACO/DER] under the oversight of the cognizant FSDO of the applicant.

The Modifications must be as good as or better than the TC design! [14 CFR 1.1]
Simplified for clarity
FAA ACO

- ALL Engineering Aspects
 - Design Approvals for all 14 CFR Part 21 Products/Articles
 - TC /Amended TC
 - STC
 - PMA
 - TSO
 - Repairs /Alterations

- Designee & Organizational Oversight
 - DERT, DERY, RS-DER
 - ODA /TC/STC/TSO/PMA & MR
FAA FSDO

• Maintenance Aspects
 - Repairs
 - Alterations
 - Rebuilds
 - Overhauls

• Airworthiness Rules
 - FAR 65 – Repairmen/Mechanics/Inspection Authorization
 - FAR 43 – Performance Rules
 - FAR 145 – Repair Stations / ODA MR
 - FAR 121, 125, 129, 135 operators
 - ODA MR Oversight & DART Designees
FAA MIDO

• New Manufacturing & Conformity Inspections Aspects
 ➢ Oversight of Production Approval Holders [PAH]
 ✧ TC Holders
 ✧ PC Holders
 ✧ PMA PAH
 ✧ TSO PAH

• Oversight & Designees
 ➢ ODA TC/PC/PMA/TSO, & DARF/DMIR
Basic Regulatory Framework

- **New Aircraft TC**
 - ACO approves design data showing compliance to FAA requirements (i.e., Part 21, and 23, or 25, 27, 29 etc)

- **Aircraft Production System**
 - MIDO approves the Fabrication Inspection System to ensure manufacturing compliance to approved design data

- **Continued Airworthiness**
 - FSDO ensures Instructions for Continued Airworthiness (ICA) are properly implemented and executed (e.g., SRM’s; SB, AMM, ESM, CMM’s)

Alternate Means of Compliance 14 CFR Part 39 (AMOC) can be used, BUT, must meet the FAA mandated AD requirements or show ELOS.
FAA Delegation & Oversight Summary

For a specific certification project scope

<table>
<thead>
<tr>
<th>Areas</th>
<th>MIDO</th>
<th>ACO</th>
<th>FSDO</th>
<th>AEG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved Data**</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>*</td>
</tr>
<tr>
<td>TC/OEM Repairs</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PMA/TSO/TC Parts</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X*</td>
</tr>
<tr>
<td>PAH Alterations</td>
<td>X</td>
<td>X</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>New AWL</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Repairs, whether OEM or DER Approved, are dictated by the same regulations & branches of the FAA [ACO/FSDO/AEG]

New Spares, whether OEM or PMA, are dictated by the same regulations & branches of the FAA [ACO/MIDO/AEG]

* May be req’d
Why are DER Repairs of Interest?

• Improved part availability
• Lower Part Replacement cost
• Using service experience, design improvements can be implemented to improve part performance (e.g., reliability, weight reduction)
• On Wing Service is extended

Avoid scrapping hard to replace and/or expensive parts
DER Repair – V2500 Ducting

- Typical defects:
 - Chafing, Dents, Cracking

- Problem:
 - CMM has limited repairs
 - Ducts are $25K-$90K to replace and have long lead times

- Solution:
 - FAA DER Approved Repair

Engine Anti-Ice & Starter Ducts
Courtesy Exotic Metals
Duct DER Approval Process

Create Repair Plan
- Section replacement
- Dent removal
- Weld repair

Identify Applicable Part Design Chapters
- 25.301 [Loads]; 25.303 [Factor of Safety]; 25.305 [Strength]; 25.307 [Structure] and others...

Substantiate Proposed Repair
- Stress Analysis
- Weld samples & Elongation Testing
- Comparative Analyses
- Inspection criteria (weld x-ray)

Need for Supplemental ICA/AWL?
- Use existing CMM

Submitted to FAA (DER & RS-DER)
DER Approval Process

• Essentially the same as for the duct example

• In this case design improvements were made to address service difficulties (frequent removals due to cracking)
The repair is now approved and shown to be as good as or better than the original TC product
DER Repair - Exhaust Cone

• Typical defects:
 – Cracking in perforated outer skin

• Problem:
 – CMM has limited repairs
 – Cracking re-occurs after short time in service
 – Cones are >$100K to replace

• Solution:
 – FAA DER Approved Repair
V2500 Exhaust Cone Repair

- Primary cracking source eliminated–improved durability
- Weight savings of 1.5lbs per engine
- 40 to 80% reduction in repair or replacement cost
- Lead time cut by > 50%

Great example of how a DER repair can not only reduce repair cost and TAT, but also improve the product performance!

Courtesy Exotic Metals
DEVELOPING A NON-BOOK REPAIR

Existing OEM Instructions
Industry Stds
Test & Analysis
Similar Designs

Path to FAA APPROVAL

FAA APPROVAL

RepairAlterationModel.pdf
Modification Process Flow

- Departure Defined
- Alternatives Substantiated
- FAA APPROVAL
- Process Verified
- Modification Performed
- Article Restored to an approved condition
NON-BOOK REPAIRS – An Example

Our Situation is:

1. We have a combustor which we have used existing ESM repair procedure ATA 72-31-12 011 [Repair 011 “Weld cracked cooling holes, blend, re-drill, FPI, re-flow, Pass/Fail. [limits are no adjacent holes can have more than ten (10) connections without one hole interruption that ends the linkage of the crack. You may have up to 210 degrees around one (1) fuel nozzle of total repaired crack length. You may have up to thirteen (13) of twenty six (26) repaired nozzles. [Air flow must be met after all holes are repaired and re-drilled per airflow standard AFS13542-01.

2. Repeated attempts of this repair have proven unsuccessful, and warranty claims by end user and TAT are negative.

3. What shall we do?
 A. OEM has been notified and they have no adequate response.
 B. Develop a DER repair alternative.
Example of a DER Alternative Repair with a Locally Mfg Part – Non-Book Repair

1. A Nozzle SPAD is locally produced, by the repair facility.
2. The damaged area is cut out
3. The new SPAD is welded in place
4. The SPAD & weld is blended
5. The weld repair is NDT Inspected
6. The new SPAD is laser drilled for air cooling holes.
7. The Combustor dome is air flowed and re-inspected to OEM Stds.
8. Repair data is FAA DER approved, in accordance to AC 43-18 Chg 1
• Flange Replacement & Guide Fin Replacement APU exist vent duct
Fab by Maintenance

Missing Spar detail
What Rules Apply to MRP’s?

Much depends on WHO is accomplishing the Modification Replacement Part tasks!

• Repair Stations: 14 CFR Part(s) 43.13, CFR Part(s) 21.303, 21.8, and the specific product design rules [i.e. Part 25, Part 33 etc.], Order(s) 8110.4C, 8110.42C, 8110.37E, 8900.1, 8100.13, 8110.54, AC 33.2b, AC 43 –18 Chg 1, AC 33 -9 Repair, AC 23.1309-1C, AC 25.1309-1A, AC 25.571, AC 33.75-1, AC 20-62D, AC21-47 & AC 120-77]
What about an Overhaul, who can declare a set of tasks as “Overhauled”

- Let see what FAA regulations 14 CFR 43.2 states:

Records of overhaul and rebuilding.

(a) No person may describe in any required maintenance entry or form an aircraft, airframe, aircraft engine, propeller, appliance, or component part as being overhauled unless--
(1) Using methods, techniques, and practices acceptable to the Administrator, it has been disassembled, cleaned, inspected, repaired as necessary, and reassembled; and
(2) It has been tested in accordance with approved standards and technical data, or in accordance with current standards and technical data acceptable to the Administrator, which have been developed and documented by the holder of the type certificate, supplemental type certificate, or a material, part, process, or appliance approval under [part 21 of this chapter.]
Common Mistakes and Misstatement's on a FAA Form 8130-3

Unless the “Holder” of a CFR Part 21 certificate has either developed [Sanctioned] or documented [Published] the aforementioned tasks in section CFR 43.2(a) [disassembled, cleaned, inspected, repaired as necessary, and reassembled, “and” Tested].

So if your performing these tasks, independent of the “HOLDER”, you have no Regulatory right to declare the action as “Overhauled”!

Bottom line is, that privilege is reserved to the “Holders” under CFR Part 21, NOT those under CFR 121, 125, 35, or 145.

Want that privilege, get a certification under CFR 21 for the Product, or Article!
What is the Status of DER acceptance in EASA member states

FAA and EASA Reciprocal Acceptance of Repair Data within the United States and European Union

Presented to: Workshop on the Implementation of Annex 2 (Maintenance) to the Agreement between USA and EU
The FAA and EASA have agreed to reciprocal acceptance of repair data.

- Implemented through the new US/EU Aviation Safety Agreement, effective May 1, 2011
 - Annex 1, paragraph 3.2.7
 - Technical Implementation Procedures, paragraph 3.3
- Implemented prior to May 2011 through Bilateral Aviation Safety Agreements Implementation Procedures for Airworthiness with 6 EU member states.
REPAIR ACCEPTANCE BY EASA & FAA

- FAA and EASA will accept each others approved repair design data regardless of State of Design of the component/product.

Two processes established:

- Streamlined Reciprocal Acceptance of repair data for non-critical components and critical components developed by the TC/STC holder
- Formal approval of critical component repair data developed by a third party
Process 1: Streamlined acceptance of repair data

US to EUROPE:

- EASA has certificated/validated the product or appliance, i.e. the product has an EASA TC/STC or ETSO approval.
- FAA is the authority of the State of Design for the repair design data.
- Data approved using the FAA system, major repair data approval via an FAA letter, FAA Form 8110-3, 8100-9 or 337
Process 1: Streamlined acceptance of repair data (continued)

EUROPE to US:

- FAA has certificated/validated the product, part, appliance or component (i.e. the product has an FAA TC/STC or TSO approval).
- EASA is acting on behalf of the State of Design for the repair design data.
Process 1: Streamlined acceptance of repair data (continued)

EUROPE to US continued:

- EASA repair design data approval is substantiated via an EASA repair design approval letter or a repair design approval issued under a Design Organisation Approval (DOA), and
- The repair is not in an area that is subject to an FAA AD, unless the AD allows for acceptance of an EASA repair design approval
Acceptance of repair data

FAA and EASA have agreed to accept each other’s systems for the classification and approval of repair data.

- Data must have a local approval.
 - FAA approval for repairs designed in the US system;
 - EASA approval for repairs designed in the EU system

Remember, FAA or EASA must approve/accept the repair design data under its own system before the other bilateral partner can accept it.
Process 2: CRITICAL COMPONENTS

Formal Approval of Critical Component Repair Data (by other than the TC/STC holder)

» Make application through FAA/EASA:
 » Fast track process when the FAA or EASA can confirm that the applicant has entered into an arrangement with the TC/STC holder for this data.
 » Validation process is required when there is no arrangement with the TC/STC holder.
 » FAA or EASA will issue its own approval of the critical component repair.
What about these modifications

- **Major Alterations and Rebuilds**
 - This terminology and status does NOT exist in EASA rules therefore it is viewed as a STC, and will require a validation process by EASA, unless it has been installed and logged unto the aircraft log book and evidence of a FAA 337, with either a 8110-3 DER approval, or a 8110-9 from an ODA.
 - Rebuilt by the Manufacturer [Under Part 21] issuance of a 8130-3 under a return to service per 14 CFR 43.2, 43.3, and 43.7. Again at this time EASA does not have a status for this status of return to service within the context of manufacturers performing maintenance. Therefore, this type of release may require EASA coordination and validation by another means.
EASA & FAA AGREEMENT SUMMARY

- FAA and EASA will accept each others approved repair design data regardless of State of Design of the component/product.

- Critical components will require additional review.
Summary

• Benefits of DER Approved Repairs
 – Often deliver benefit of reduced maintenance costs
 – Many times improve availability of parts, getting your aircraft back into revenue sooner
 – Offer the potential for design improvements that enhance aircraft utilization and lower operating cost